Sistemas de Numeração
Surge com a necessidade de contar e tem seus primeiros sistemas relacionados com o homem primitivo.As primeiras contagens são relacionadas aos dedos da mão (sistema fingers). Com a necessidade de aumento é incorporado o sistema toes (dedos do pé) que leva ao surgimento dos sistemas decimais e vigesimais.
Os sistemas são utilizados para descrever o que chamamos de Sinais (eventos que ocorrem em relação a um determinado tempo).
Sinal Analógico
São sinais contínuos no tempo, neste tipo de sinal ocorre a passagem de um evento de forma suave e podem assumir qualquer valor.Sinal Digital
São sinais descontínuos com valores discretos (não assumem qualquer valor).Exemplo: imagine um termômetro digital e um analógico. Enquanto o digital retorna valores discretos, pode-se, com a utilização de uma lupa, devolver valores suaves para um termômetro analógico.
Os fenômenos físicos ocorrem todos com sinal analógico.
Contudo, os sinais digitais apresentam algumas vantagens:
- são mais fáceis de projetar;
- facilidade em seu armazenamento;
- menos suscetível a ruídos.
Descrição de Números
Todo sistema de numeração, seja ele digital ou analógico, segue um padrão de representação padrão. Este é dado por:...+XBy+...
Onde:
X = dado do sistema de numeração
B = base do sistema de numeração
Y = posição do dígito com relação a vírgula
Obs.: y = 0 para o primeiro dígito à esquerda da vírgula, y = -1 para o primeiro dígito à direita da vírgula.
ϵ=323841.52103∗105+2∗104+3∗103+8∗102+4∗101+1∗100+5∗10−1+2∗10−2
Quando um número não apresenta indicativo de base a direita, sua base é 10.
Sistema Binário
São representados pela base 2 e apresentam apenas dois dígitos: 1 e 0. O sistema binário possui uma correspondência direta entre os sinais analógicos e digitais, uma vez que sua conversão ocorre de forma direta.Exemplo:
100110121∗26+0∗25+0∗24+1∗23+1∗22+0∗21+1∗20=64+0+0+8+4+0+1=7710
Ocorre assim a conversão de binário em decimal. Como realizar o processo inverso?
Duas maneiras:
1. Vá dividindo por 2 e coletando os restos. Exemplo: para 23 na base 10:
23/2 = 11, resto 1
11/2 = 5, resto 1
5/2 = 2, resto 1
2/2 = 1, resto 0
Agora veja bem: você pega o resultado da primeira divisão, 1, e vai acrescentando ao número os restos em ordem inversa (ou seja, nesse caso, de baixo pra cima). 23 em binário fica 10111.
2. Para até 8 bits, faça a seguinte fila:
1 - 2 - 4 - 8 - 16 - 32 - 64 - 128 - 256
Ou seja, 2 elevado a um número de 0 a 8. Aí é só localizar o número entre esses e analisar qual soma é necessária pra chegar a ele. Peguemos 23 novamente:
- ele está antes do 32 e depois do 16, então já convém pegar o 16;
- 16+8 = 24, passou de 23, não compensa pegar o 8. 16+4 = 20;
- 20+2 = 22;
- 22+1, 23.
1 - 2 - 4 - 8 - 16
1 - 1 - 1 - 0 - 1
Invertendo, temos 10111. O mesmo resultado usando a outra maneira. Essa é meio pior de explicar porque depende bastante da prática, mas é só ir pegado.
Números fracionários
1101.1112
Agora você vai imaginar o seguinte: 2 elevado a -1 é 0.5, a -2 é 0.25, a -3 0.125, e a cada expoente n+1 você vai dividindo o resultado por 2 (lógico).
Mas a conversão em si de binário pra decimal é bem fácil. É só decompor os números normalmente:
1∗23+1∗22+0∗21+1∗20+1∗2−1+1∗2−2+1∗2−38+4+0+1+0.5+0.25+0.125=13+0.875=13.875
E essa foi a aula de sexta. Boa tarde a todos.
Nenhum comentário:
Postar um comentário